Chương II - Hàm số bậc nhất

NP

Tìm giá trị của m để đồ thị hàm số y = \(\left(m-2\right)x+m^2-3\) cắt trục hoành tại điểm có hoành độ bằng 4.

NH
15 tháng 8 2021 lúc 11:00

Hàm số \(y=\left(m-2\right)x+m^2-3\) cắt đồ thị tại điểm có hoành độ bằng 4

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)

\(\Leftrightarrow0=4\left(m-2\right)+m^2-3\)

\(\Leftrightarrow m^2+4m-11=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{15}\\m=-2-\sqrt{15}\end{matrix}\right.\)

Bình luận (0)
CH
15 tháng 8 2021 lúc 11:01

Đồ thị cắt trục hoành tại điểm có hoành độ bằng 4 => A(4;0)

thay A(4;0) vào hàm số ta có:

\(\left(m-2\right).4+m^2-3=0\)

\(\Leftrightarrow4m-8+m^2-3=0\\ \Leftrightarrow m^2+4m-11=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{15}\\m=-2-\sqrt{15}\end{matrix}\right.\)

Bình luận (0)
NT
15 tháng 8 2021 lúc 12:46

Thay x=4 và y=0 vào hàm số, ta được:

\(4\left(m-2\right)+m^2-3=0\)

\(\Leftrightarrow m^2-3+4m-8=0\)

\(\Leftrightarrow m^2+4m-11=0\)

\(\text{Δ}=4^2-4\cdot1\cdot\left(-11\right)=60\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{-4-2\sqrt{15}}{2}=-2-\sqrt{15}\\m_2=\dfrac{-4+2\sqrt{15}}{2}=-2+\sqrt{15}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PL
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
AQ
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
2A
Xem chi tiết
VV
Xem chi tiết