Chương I : Số hữu tỉ. Số thực

NY

Tìm các số x1, x2, x3, ... , xn-1, xn biết rằng:

\(\dfrac{x_1}{a_1}=\dfrac{x_2}{a_2}=\dfrac{x_3}{a_3}=...=\dfrac{x_{n-1}}{a_{n-1}}=\dfrac{x_n}{a_n}\) và x1 + x2 + x3 + ... + xn-1 + xn = c

(với a1, a2, a3, ... , an-1, an ≠ 0 và a1 + a2 + a3 + ... + an-1 + an ≠ 0)

AH
25 tháng 4 2018 lúc 12:26

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x_1}{a_1}=\frac{x_2}{a_2}=\frac{x_3}{a_3}=...=\frac{x_n}{a_n}=\frac{x_1+x_2+...+x_n}{a_1+a_2+...+a_{n}}\)

\(=\frac{c}{a_1+a_2+...+a_n}\)

Do đó:

\(\left\{\begin{matrix} x_1=\frac{ca_1}{a_1+a_2+....+a_n}\\ x_2=\frac{ca_2}{a_1+a_2+....+a_n}\\ x_3=\frac{ca_3}{a_1+a_2+...+a_n}\\ ...\\ x_n=\frac{ca_n}{a_1+a_2+..+a_n}\end{matrix}\right.\)

Tóm lại : \(x_i=\frac{ca_i}{a_1+a_2+...+a_n}\) với \(i=1,2,3,...,n\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TQ
Xem chi tiết
QD
Xem chi tiết
MN
Xem chi tiết
NH
Xem chi tiết
DS
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
YA
Xem chi tiết