Chương I : Số hữu tỉ. Số thực

NT

a) Tìm các số a1 ,a2 ,a3 ,...,a9 biết:

\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=...=\dfrac{a_9-9}{1}\)

và a1+a2+a3+...+a9=90

b) Tìm x, biết rằng:

\(\dfrac{1+2y}{18}=\dfrac{1+4y}{24}=\dfrac{1+6y}{6x}\)

LT
14 tháng 7 2017 lúc 13:56

a) \(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=...=\dfrac{a_9-9}{1}\)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=....=\dfrac{a_9-9}{1}\)

\(=\dfrac{a_1-1+a_2-2+a_3-3+...+a_9-9}{9+8+7+...+1}\)

\(=\dfrac{\left(a_1+a_2+a_3+...+a_9\right)-9-8-7-...-1}{45}\)

\(=\dfrac{90-45}{45}=\dfrac{45}{45}=1\)

Từ đó => a1 = a2 = a3 = .... = a9 = 10

b) Áp dụng tính chất của dã tỉ số bằng nhau, ta có:

\(\dfrac{1+2y}{18}=\dfrac{1+6y}{6x}=\dfrac{1+2y+1+6y}{18+6x}=\dfrac{2+8y}{18+6x}=\dfrac{2\left(1+4y\right)}{2\left(9+3x\right)}=\dfrac{1+4y}{9+3x}\)

\(\Rightarrow\dfrac{1+4y}{9+3x}=\dfrac{1+4y}{24}\Rightarrow9+3x=24\)

\(\Rightarrow3x=15\)

\(\Rightarrow x=5\)

Vậy...

Bình luận (0)
MS
14 tháng 7 2017 lúc 14:19

\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=...=\dfrac{a_9-9}{1}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(=\dfrac{a_1-1+a_2-2+a_3-3+....+a_9-9}{9+8+7+.....+1}\)

\(=\dfrac{\left(a_1+a_2+a_3+.....+a_9\right)-\left(1+2+3++.....+9\right)}{9+8+7+.....+1}\)

\(=\dfrac{90-45}{45}=1\)

\(\Rightarrow a_1-1=9\Rightarrow a_1=10\)

\(\Rightarrow a_2-2=8\Rightarrow a_2=10\)

\(\Rightarrow a_3-3=7\Rightarrow a_3=10\)

\(.............................................\)

\(\Rightarrow a_9-9=1\Rightarrow a_9=10\)

\(\Rightarrow a_1=a_2=a_3=.....=a_{10}\)

Bình luận (0)

Các câu hỏi tương tự
MN
Xem chi tiết
H24
Xem chi tiết
BN
Xem chi tiết
CM
Xem chi tiết
NY
Xem chi tiết
HG
Xem chi tiết
LT
Xem chi tiết
NA
Xem chi tiết
NL
Xem chi tiết