Ôn thi vào 10

MK

tìm các số tự nhiên m để pt: m\(x^2+2\left(m-1\right)x+m-4=0\) có nghiệm là các số hưu tỉ( số chính phương)

NL
30 tháng 4 2021 lúc 12:51

- Với \(m=0\Rightarrow x=-2\) thỏa mãn

- Với \(m\ne0\)

\(\Delta'=\left(m-1\right)^2-m\left(m-4\right)=2m+1\)

Pt có nghiệm hữu tỉ khi và chỉ khi \(2m+1\) là số chính phương

Mà \(2m+1\) lẻ \(\Rightarrow2m+1\) là SCP lẻ

\(\Rightarrow2m+1=\left(2k+1\right)^2\) với \(k\in N\)

\(\Rightarrow m=2k\left(k+1\right)\)

Vậy với \(m=2k\left(k+1\right)\) (với \(k\in N\)) thì pt có nghiệm hữu tỉ

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
MK
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
HB
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết