Violympic toán 6

MA

Tìm các số nguyên x;y biết rằng: (x - 2)^2 . (y-3) = -4

NT
12 tháng 4 2021 lúc 23:13

\(\left(x-2\right)^2.\left(y-3\right)=-4\\ \rightarrow\left(x-2\right)^2\inƯ\left(4\right),y-3\inƯ\left(4\right).\)

Vì x, y nguyên. Do đó \(\left(x-2\right)^2=1\) hoặc \(\left(x-2\right)^2=4.\)

TH1: \(\left(x-2\right)^2=1\) suy ra x = 1 hoặc x = 3

Khi đó y - 3 = 4 suy ra y = 7.

TH2: \(\left(x-2\right)^2=4\) suy ra x = 4 hoặc x = 0.

Khi đó y - 3 = 1 suy ra y = 4.

Vậy có 4 cặp x, y thỏa mãn là (x, y) = (1, 7); (3, 7); (4, 4); (0, 4)

Bình luận (0)
AH
13 tháng 4 2021 lúc 13:10

Lời giải:

Với $x,y$ nguyên thì $(x-2)^2, y-3$ cũng nguyên và $(x-2)^2$ số chính phương nên không âm.

Tích 2 số nguyên bằng $-4$ nên xảy ra các TH sau:

TH1: $(x-2)^2=1; y-3=-4$

$\Rightarrow x=1$ hoặc $x=3; y=-1$. Ta có $(x,y)=(1,-1); (3,-1)$

TH2: $(x-2)^2=4; y-3=-1$

$\Rightarrow x=0$ hoặc $x=4; y=2$. Ta có $(x,y)=(0,2); (4,2)$

 

Bình luận (0)

Các câu hỏi tương tự
GL
Xem chi tiết
KH
Xem chi tiết
KN
Xem chi tiết
DX
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết
TC
Xem chi tiết
AA
Xem chi tiết
DN
Xem chi tiết