Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm các số nguyên x, y, z biết: \(x^2+5y^2+6z^2+2xy-4xz=10\)
Tìm các số nguyên x, y, z biết: \(X^2+5Y^2+6Z^2+2XY-4XZ=10\)
Tìm các số nguyên x, y, z biết: \(x^2+5y^2+6z^2+2xy-4xz=10\)
Tìm các số nguyên x, y, z biết: \(x^2+5y^2+6z^2+2xy-4xz=10\)
cho các số thực x,y,,z≥0 thỏa mãn x+y+z=3.Tìm giá trị nhỏ nhất và giá trị lớn nhất cảu biểu thức \(P=\sqrt{x^2-6x+25}+\sqrt{y^2-6y+25}+\sqrt{z^2-6z+25}\)
Cho x,y,z >0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\). Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{5x^2+2xy+2y^2}}+\dfrac{1}{\sqrt{5y^2+2yz+2z^2}}+\dfrac{1}{\sqrt{5z^2+2xz+2x^2}}\)
Cho ba số thực x, y, z dương. Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{\sqrt{2x^2+2xy+5y^2}}{3x+y+5z}+\dfrac{\sqrt{2y^2+2yz+5z^2}}{3y+z+5x}+\dfrac{\sqrt{2z^2+2xz+5x^2}}{3z+x+5y}\)
Cho : x,y,z là các số dương thỏa mãn \(\sqrt{x+2}-x^3=\sqrt{x+2}-y^3\)
tìm GTNN của \(x^2+2xy-y^2+2y+2020\)
1) Chứng minh rằng: \(x^3-7y=51\) không có nghiệm nguyên
2) Tìm nghiệm nguyên của phương trình \(x^2-5y^2=27\)
3) Tìm nghiệm nguyên dương
a) \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
b)\(\dfrac{1}{x}+\dfrac{1}{y}=z\)