Violympic toán 9

TK

Tìm các số nguyên tố x, y thỏa mãn: (x2 + 2)2 = 2y4 + 11y2 + x2y2 + 9

TH
16 tháng 1 2021 lúc 21:55

Nếu x, y không chia hết cho 3 thì x2 chia cho 3 dư 1, do đó \(\left(x^2+2\right)^2\) chia hết cho 3.

Mà \(2y^4+11y^2+x^2y^2+9\) không chia hết cho 3 nên suy ra vô lí.

Do đó x = 3 hoặc y = 3 (Do x, y là các số nguyên tố).

Với x = 3 ta có \(2y^4+20y^2+9=121\Leftrightarrow y^4+10y^2-56=0\Leftrightarrow\left(y^2-4\right)\left(y^2+14\right)=0\Leftrightarrow y=2\) (Do y là số nguyên tố).

Với y = 3 ta có:

\(\left(x^2+2\right)^2=9x^2+270\Leftrightarrow x^4-5x^2-266=0\Leftrightarrow\left(x^2+14\right)\left(x^2-19\right)=0\). Không tồn tại số nguyên tố x thoả mãn.

Vậy x = 2; y = 3.

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
MH
Xem chi tiết
MD
Xem chi tiết
EO
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
LT
Xem chi tiết
TT
Xem chi tiết
DT
Xem chi tiết