Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

H24

Tìm các số nguyên dương a, b sao cho \(\frac{2a+b}{a+2b+1};\frac{a+2b}{2a+b-2}\) đều là các số nguyên

AH
29 tháng 11 2019 lúc 10:14

Lời giải:

Để bài toán được thỏa mãn thì:

\(\left\{\begin{matrix} 2a+b\vdots a+2b+1\\ a+2b\vdots 2a+b-2\end{matrix}\right.\Rightarrow (2a+b)(a+2b)\vdots (a+2b+1)(2a+b-2)\)

\(\Leftrightarrow (2a+b)(a+2b)\vdots (a+2b)(2a+b)-3b-2\)

\(\Rightarrow 3b+2\vdots (a+2b+1)(2a+b-2)\)

Vì $3b+2>0$ nên từ đây suy ra $3b+2\geq (a+2b+1)(2a+b-2)$

Mà $a\geq 1$ nên $(a+2b+1)(2a+b-2)\geq (2+2b)b$

$\Rightarrow 3b+2\geq (2+2b)b

$\Leftrightarrow 2b^2-b-2\leq 0(*)$

Nếu $b\geq 2$ thì $2b^2-b-2\geq 4b-b-2=3b-2>0$ nên không thỏa mãn $(*)$

Do đó $b=1$

Thay vào điều kiện ban đầu: $2a+1\vdots a+3$

$\Leftrightarrow 2(a+3)-5\vdots a+3$

$\Leftrightarrow 5\vdots a+3$

$\Rightarrow a+3=5$ (do $a+3\geq 4$) $\Rightarrow a=2$

Thử lại thấy thỏa mãn

Bình luận (0)
 Khách vãng lai đã xóa
H24
28 tháng 11 2019 lúc 20:35

@Akai Haruma

Bình luận (0)
 Khách vãng lai đã xóa
H24
28 tháng 11 2019 lúc 20:36

@Nguyễn Việt Lâm

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
KR
Xem chi tiết
NN
Xem chi tiết
NU
Xem chi tiết
LD
Xem chi tiết
KR
Xem chi tiết
HQ
Xem chi tiết
TA
Xem chi tiết
TP
Xem chi tiết
BT
Xem chi tiết