Bài 5: Giá trị lượng giác của một góc từ 0˚ đến 180˚

QL

Tìm các giá trị lượng giác của góc \({120^o}\) (H.3.4)

KT
24 tháng 9 2023 lúc 15:11

Tham khảo:

Gọi M là điểm trên nửa đường tròn đơn vị sao cho \(\widehat {xOM} = {120^o}\)

Gọi N, P tương ứng là hình chiếu vuông góc của M lên các trục Ox, Oy.

Vì  \(\widehat {xOM} = {120^o} > {90^o}\) nên M nằm bên trái trục tung.

Khi đó:\(\;\cos {120^o} =  - \,\;\overline {ON} ,\;\;\sin {120^o} = \overline {OP} \)

Vì \(\widehat {xOM} = {120^o}\) nên \(\widehat {NOM} = {180^o} - {120^o} = {60^o}\) và \(\widehat {POM} = {120^o} - {90^o} = {30^o}\)

Vậy các tam giác \(\Delta MON\) và \(\Delta MOP\) vuông tại N, p và có một góc bằng \({30^o}\)

\( \Rightarrow ON = MP = \frac{1}{2}OM = \frac{1}{2}\)(Trong tam giác vuông, cạnh đối diện góc \({30^o}\) bằng một nửa cạnh huyền)

Và \(OP = MN = \sqrt {O{M^2} - O{N^2}}  = \sqrt {{1^2} - {{\left( {\frac{1}{2}} \right)}^2}}  = \frac{{\sqrt 3 }}{2}\)

Vậy điểm M có tọa độ là \(\left( { - \frac{1}{2};\frac{{\sqrt 3 }}{2}} \right)\).

Và \(\cos {120^o} =  - \frac{1}{2};\;\;\;\sin {120^o} = \frac{{\sqrt 3 }}{2}\)

\(\begin{array}{l}\; \Rightarrow \;\tan {120^o} = \frac{{\sin {{120}^o}}}{{\cos {{120}^o}}} = \frac{{\sqrt 3 }}{2}:\left( { - \frac{1}{2}} \right) =  - \sqrt 3 ;\\\cot {120^o} = \frac{{\cos {{120}^o}}}{{\sin {{120}^o}}} = \left( { - \frac{1}{2}} \right):\frac{{\sqrt 3 }}{2} = \frac{{ - 1}}{{\sqrt 3 }} =  - \frac{{\sqrt 3 }}{3}.\end{array}\)

Chú ý

Ta có thể sử dụng máy tính cầm tay để tính các giá trị lượng giác góc \({120^o}\)

Với các loại máy tính fx-570 ES (VN hoặc VN PLUS) ta làm như sau:

Bấm phím “SHIFT”  “MODE” rồi bấm phím “3” (để chọn đơn vị độ)

Tính \(\sin {120^o}\), bấm phím:  sin  1  2  0  \(^o\)’’’  = ta được kết quả là \(\frac{{\sqrt 3 }}{2}\)

Tính \(\cos {120^o}\),bấm phím:  cos  1  2  0  \(^o\)’’’  = ta được kết quả là \(\frac{{ - 1}}{2}\)

Tính \(\tan {120^o}\), bấm phím:  tan  1  2  0  \(^o\)’’’  = ta được kết quả là \( - \sqrt 3 \)

( Để tính \(\cot {120^o}\), ta tính \(1:\tan {120^o}\))

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết