Bài 1: Dấu của tam thức bậc hai

QL

Tìm biệt thức và nghiệm của các tam thức bậc hai sau:

a) \(f\left( x \right) = 2{x^2} - 5x + 2\)

b) \(g\left( x \right) =  - {x^2} + 6x - 9\)

c) \(h\left( x \right) = 4{x^2} - 4x + 9\)

HM
26 tháng 9 2023 lúc 23:10

a) Tam thức bậc hai \(f\left( x \right) = 2{x^2} - 5x + 2\) có \(\Delta  = {\left( { - 5} \right)^2} - 4.2.2 = 9\)

\(\Delta  > 0\), do đó \(f\left( x \right)\) có hai nghiệm phân biệt là

          \({x_1} = \frac{{5 + \sqrt 9 }}{4} = 2\) và \({x_1} = \frac{{5 - \sqrt 9 }}{4} = \frac{1}{2}\)

b) Tam thức bậc hai \(g\left( x \right) =  - {x^2} + 6x - 9\) có \(\Delta  = {6^2} - 4.\left( { - 1} \right).\left( { - 9} \right) = 0\)

\(\Delta  = 0\), do đó \(g\left( x \right)\)có nghiệm kép \({x_1} = {x_2} = \frac{{ - 6}}{{2.\left( { - 1} \right)}} = 3\)

c) Tam thức bậc hai \(h\left( x \right) = 4{x^2} - 4x + 9\) có \(\Delta  = {\left( { - 4} \right)^2} - 4.4.9 =  - 128\)

\(\Delta  < 0\), do đó \(h\left( x \right)\) vô nghiệm

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết