Chương I : Số hữu tỉ. Số thực

HM

Tìm a,b,c biết

\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\) và a+b+c=-50

LB
26 tháng 11 2017 lúc 9:12

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}=\dfrac{5.\left(3a-2b\right)+3.\left(2c-5a\right)}{5.5+3.3}=\dfrac{-10b+6c}{34}=\)

\(=\dfrac{-5b+3c}{17}\)

Do đó: \(\dfrac{5b-3c}{14}=\dfrac{-5b+3c}{2}\)

Suy ra: \(5b-3c=0\Rightarrow b=\dfrac{3}{5}c\)\(a=\dfrac{2}{5}c\)

Lại có: \(a+b+c=-50\Rightarrow\dfrac{2}{5}c+\dfrac{3}{5}c+c=-50\Rightarrow c=-25\)

\(\Rightarrow b=\dfrac{3}{5}.\left(-25\right)=-15\)

\(a=\dfrac{2}{5}.\left(-25\right)=-10\)

Vậy \(\left\{{}\begin{matrix}a=-10\\b=-15\\c=-25\end{matrix}\right.\)

Chúc bạn học tốt!!!

Bình luận (1)
NH
26 tháng 11 2017 lúc 9:15

Theo t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}=\dfrac{5\left(3a-2b\right)\left(2c-5a\right)}{5.5+3.3}=\dfrac{-10b+6c}{34}=\dfrac{-5b+3c}{17}\)

\(\Leftrightarrow\dfrac{5b-3c}{2}=\dfrac{-5b+3c}{17}\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{3c}{5}\\a=\dfrac{2c}{5}\end{matrix}\right.\)

\(a+b+c=-50\)

\(\Leftrightarrow\dfrac{2c}{5}+\dfrac{3c}{5}+c=-50\)

\(\Leftrightarrow2c=-50\)

\(\Leftrightarrow c=-25\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-15\\a=-10\end{matrix}\right.\)

Vậy ..

Bình luận (5)
AH
26 tháng 11 2017 lúc 9:32

Một cách giải khác:

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\Leftrightarrow \frac{5(3a-2b)}{25}=\frac{3(2c-5a)}{9}=\frac{2(5b-3c)}{4}=\frac{5(3a-2b)+3(2c-5a)+2(5b-3c)}{25+9+4}=0\)

\(\Rightarrow \left\{\begin{matrix} 3a-2b=0\\ 2c-5a=0\\ 5b-3c=0\end{matrix}\right.\)

\(\Leftrightarrow 15a=10b=6c\Leftrightarrow \frac{a}{\frac{1}{15}}=\frac{b}{\frac{1}{10}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{15}+\frac{1}{10}+\frac{1}{6}}=\frac{-50}{\frac{1}{3}}=-150\)

(Áp dụng tính chất dãy tỉ số bằng nhau)

\(\Rightarrow \left\{\begin{matrix} a=-10\\ b=-15\\ c=-25\end{matrix}\right.\)

Bình luận (1)

Các câu hỏi tương tự
MS
Xem chi tiết
N
Xem chi tiết
NA
Xem chi tiết
VV
Xem chi tiết
DH
Xem chi tiết
TT
Xem chi tiết
NN
Xem chi tiết
DQ
Xem chi tiết
TV
Xem chi tiết