Chương I : Số hữu tỉ. Số thực

N

Giúp mik nhé mí bạn.

1) Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . CM :

b) \(\dfrac{5a-3b}{3a+2b}=\dfrac{5c-3d}{3c+2d}\)

c) \(\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

d) \(\dfrac{7a-4b}{3a+5b}=\dfrac{7c-4d}{3c+5d}\)

e) \(\dfrac{a^2}{b^2}=\dfrac{ac}{bd}=\dfrac{c^2}{d^2}\)

f) \(\dfrac{\left(a+c\right)^2}{a^2-c^2}=\dfrac{\left(b+d\right)^2}{b^2-d^2}\)

Làm được câu nào thì trả lời nhé . Thanks trước

NN
4 tháng 9 2017 lúc 19:50

Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\)=>\(\dfrac{a}{c}=\dfrac{b}{d}\)

<=>\(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{3a}{3c}=\dfrac{2b}{2d}\)

<=>\(\dfrac{5a-3b}{5c-3d}=\dfrac{3a-2b}{3c-2d}\)(đpcm)

Các câu sau tương tự

Bình luận (0)
N
4 tháng 9 2017 lúc 19:53

Nguyễn Thị Hồng Nhung chị làm bài f đc ko ạ ???

Bình luận (0)
SN
4 tháng 9 2017 lúc 22:30

c/ Theo đề bài ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{ac}{c^2}=\dfrac{bd}{d^2}=\dfrac{ac}{bd}=\dfrac{c^2}{d^2}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\left(\dfrac{a+c}{b+d}\right)^2=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
d/ tương tự câu b/
e/ Theo đề bài ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{ac}{c^2}=\dfrac{bd}{d^2}=\dfrac{ac}{bd}=\dfrac{c^2}{d^2} \)(1)
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{ac}{bd}=\dfrac{c^2}{d^2}\)(đpcm)
f/ Theo đề bài ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(1\right)\)
\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2-c^2}{b^2-d^2}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{\left(a+c\right)^2}{a^2-c^2}=\dfrac{\left(b+d\right)^2}{b^2-d^2}\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
TT
Xem chi tiết
DH
Xem chi tiết
NL
Xem chi tiết
BD
Xem chi tiết
NA
Xem chi tiết
LM
Xem chi tiết
L7
Xem chi tiết
DD
Xem chi tiết