Giới hạn đã cho hữu hạn nên \(ax^3+bx^2+4=0\) có nghiệm \(x=-2\)
\(\Rightarrow-8a+4b+4=0\Rightarrow b=2a-1\)
\(\lim\limits_{x\rightarrow-2}\dfrac{ax^3+\left(2a-1\right)x^2+4}{\left(x-1\right)^2\left(x+2\right)}=\lim\limits_{x\rightarrow-2}\dfrac{\left(x+2\right)\left(ax^2-x+2\right)}{\left(x-1\right)^2\left(x+2\right)}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{ax^2-x+2}{\left(x-1\right)^2}=\dfrac{4a+4}{9}=2\Rightarrow a=\dfrac{7}{2}\) \(\Rightarrow b=6\)
Đúng 1
Bình luận (0)