Bài 1: Nguyên hàm

DT

tìm a, b sao cho F(x) = (a sin x + b cos x ) .ex là một nguyên hàm của f(x) = ex .cos x trên R

AH
17 tháng 1 2018 lúc 22:54

Lời giải:

Ta có:

\(F(x)=\int f(x)dx=\int e^x\cos xdx\)

Đặt \(\left\{\begin{matrix} u=e^x\\ dv=\cos xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=e^xdx\\ v=\int \cos xdx=\sin x\end{matrix}\right.\)

Do đó:

\(F(x)=\int e^x\cos xdx=e^x\sin x-\int \sin x.e^xdx+c\) (1)

Đặt \(\left\{\begin{matrix} u=e^x\\ dv=\sin xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=e^xdx\\ v=\int \sin xdx=-cos x\end{matrix}\right.\)

\(\Rightarrow \int \sin x.e^xdx=-\cos x.e^x+\int \cos x.e^xdx+c\) (2)

Từ (1)(2) suy ra:

\(F(x)=e^x.\sin x+\cos x.e^x-\int \cos x.e^xdx+c\)

\(\Leftrightarrow F(x)=e^x\sin x+e^x\cos x-F(x)+c\)

\(\Leftrightarrow F(x)=\frac{1}{2}e^x(\sin x+\cos x)+c\)

Do đó: \(a=b=\frac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết
PD
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết
SK
Xem chi tiết