Chương II : Tam giác

DT

tim 4 so tu nhien lien tiep co tich la 24

TH
29 tháng 8 2018 lúc 10:25

Gọi 4 số tự nhiên liên tiếp lần lượt là n ; n + 1 ; n + 2 ; n + 3

Ta có:

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=24\)

\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)-24=0\)

\(\Rightarrow\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]-24=0\)

\(\Rightarrow\left(n^2+3n\right)\left(n^2+3n+2\right)-24=0\)

Đặt \(n^2+3n+1=a\)

\(\Rightarrow\left(a-1\right)\left(a+1\right)-24=0\)

\(\Rightarrow a^2-1-24=0\)

\(\Rightarrow a^2-25=0\)

\(\Rightarrow\left(a-5\right)\left(a+5\right)=0\)

\(\Rightarrow\left(n^2+3n+1-5\right)\left(n^2+3n+1+5\right)=0\)

\(\Rightarrow\left(n^2+3n-4\right)\left(n^2+3n+6\right)=0\)

\(\Rightarrow\left(n^2-n+4n-4\right)\left(n^2+3n+6\right)=0\)

\(\Rightarrow\left[n\left(n-1\right)+4\left(n-1\right)\right]\left(n^2+3n+6\right)=0\)

\(\Rightarrow\left(n-1\right)\left(n+4\right)\left(n^2+3n+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}n-1=0\\n+4=0\\n^2+3n+6=0\end{matrix}\right.\)

Mà ta có:

\(n^2+3n+6\)

\(=n^2+2.n\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}+6\)

\(=\left(n+\dfrac{3}{2}\right)^2+\dfrac{15}{4}\)

\(\left(n+\dfrac{3}{2}\right)^2\ge0\) với mọi n

\(\Rightarrow\left(n+\dfrac{3}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\)

\(\Rightarrow n^2+3n+6\) vô nghiệm

\(\Rightarrow\left[{}\begin{matrix}n-1=0\\n+4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}n=1\\n=-4\end{matrix}\right.\)

Vì n là số tự nhiên

=> n = 1

Vậy 4 số tự nhiên liên tiếp có tích là 24 lần lượt là 1 ; 2 ; 3 ; 4

Bình luận (0)

Các câu hỏi tương tự
JT
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
NN
Xem chi tiết
TB
Xem chi tiết
NN
Xem chi tiết
DA
Xem chi tiết
LT
Xem chi tiết