Bài 1:Thực hiện các phép tính
a. (x5 +4x3 - 6x2):4x2
b. (x3 +x2-12) : (x-2)
c. (-2x5+3x2-4x3):2x2
d. (x3 - 64):(x2 + 4x + 16)
Bài 2:Rút gọn biểu thức
a. 3x (x - 2)- 5x (1 - x) - 8(x2 - 3)
b.(x - y) (x2 + xy + y2)+2y3
c. (x - y)2 + (x+y)2 - 2(x-y) (x+y)
Chứng minh rằng : x2+2y2+2xy+6x+2y+2027≥2014
bt x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0
tìm max và min của B=x+y+2020
thực hiện phép tính
\(\dfrac{1}{x-y}-\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)
a) Cho các số a, b, c thỏa mãn:a + b + c = 3/2. Chứng minh rằng: a2 + b2 + c2 ≥ 3/4.
b) Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 2xy – 6x – 8y + 2028?
Thực hiện các phép chia:
\(\left(x^3+3x^2y+3xy^2+y^3\right):2\left(x+y\right)^2\)
\(\left(3x^3-5x^2+9x-15\right):\left(3x-5\right)\)
Bài 1: a. Giải phương trình nghiệm nguyên: x2+xy-2x+1=x+y
b. Cho x,y là các số thực khác thỏa mãn: x2-2xy+2y2-2y-2x+5=0
Tính P = xy+x+y+15/4xy
Bài 2: Cho a,b nguyên dương với a+1 và b+2007 đều chia hết cho 6. CMR: 4a+a+b chia hết cho 6
Bài 3: Cho a,b >0 thỏa mãn a+b=1
Tính GTNN của P =1/ab+40(a4+b4)(bài này dùng bất dẳng thức cô-si và bunhiacopxki)
thực hiện phép tính
a.\(\dfrac{x}{3x+y}+\dfrac{x}{3x-y}-\dfrac{2xy}{y^2-9x^2}\)
b.\(\dfrac{4x+5}{x^2+5x}-\dfrac{3}{x+5}\)
1.rút gọn biểu thuc P=\(\dfrac{2}{x+3}+\dfrac{1}{x-3}+\dfrac{9-x}{9-x^2}\) với x\(\ne-3vàx\ne3\)
2.thực hiện phép tính \(\left(2x^4-3x^3-3x^2+6x-1\right):\left(x^2-2\right)\)
\(\left(15x^4y^6-12^3y^4-18x^2y^3\right):\left(-6x^2y^2\right)\)