Thu gọn:
a) \(\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
b) \(\left(\frac{\sqrt{x}+1}{x-4}-\frac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right)\cdot\frac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}}\)
Bài 2 Rút gọn các biểu thức sau
\(A=\frac{\sqrt{x}+4}{\sqrt{x}+1}-\frac{3}{x-1}:\frac{1}{\sqrt{x}-1}\)
B = \(\left(\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}+6\right)\left(\frac{x\sqrt{x}-1}{x+\sqrt{x}+1}-3\right)\)
C = \(\frac{2\sqrt{x}}{x-1}+\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}-x}\)
Bài 2 Rút gọn các biểu thức sau ( coi các biểu thức đều có nghĩa )
A = \(\frac{\sqrt{x+4}}{\sqrt{x+1}}-\frac{3}{x-1}:\frac{1}{\sqrt{x-1}}\)
B = \(\left(\frac{x-4\sqrt{x+4}}{\sqrt{x-2}}+6\right)\) ( \(\frac{x\sqrt{x}-1}{x+\sqrt{x}+1}-3\) )
C = \(\frac{2\sqrt{x}}{x-1}+\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}-x}\)
Rút gọn
P = \(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3+7\sqrt{x}}{9-x}\)
Rút gọn biểu thức sau
D = \(\left(\frac{5}{x-\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}-3}\)
E = \(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
Rút gọn các biểu thức sau
D = \(\left(\frac{5}{x-\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}-3}\)
E =\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a-1}}\right):\frac{\sqrt{a+1}}{a-2\sqrt{a}+1}\)
F = \(\left(\frac{1}{\sqrt{a-1}}+\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\)
Giải các bất phương trình sau:
a)\(2x^2-3x+1>0\) b)\(-3x^2+2x+1< 0\)
c)\(\frac{x+3}{x-2}\ge0\) d)\(\frac{2x+1}{x+2}\ge1\)
e)\(\frac{\sqrt{x}+3}{2-\sqrt{x}}\le0\) g)\(\frac{\sqrt{x}-3}{\sqrt{x}-2}\ge0\)
h)\(\frac{\sqrt{x}-3}{\sqrt{x}-1}< \frac{1}{3}\)
\(B=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Rút gọn B
b) x bằng mấy để \(\left|B\right|=B\)
rút gọn B=\(\dfrac{\sqrt{1-\sqrt{1-x^2}}.\left(\sqrt{\left(1+x\right)^3}+\sqrt{\left(1-x\right)^3}\right)}{2-\sqrt{1-x^2}}\)