Violympic toán 6

\(\text{Tìm số tự nhiên n để n+18 và n-41 là hai số chính phương.}\)

đặt n+18 = k^2 (1) 
và n - 41 = m^2 (2) 
Lấy (1) trừ (2) ta được: 
k^2 - m^2 = 59 
=> (k-m)(k+m) = 59 
Do k + m > k-m và 59 = 1 . 59 
nên k+m = 59 và k-m = 1 
=> k+m = 59 và k-m = 1 thì k = 30 và m = 29 
Vậy n + 18 = k^2 = 30^2 = 900 
=> n = 882

 
Bình luận (0)

Các câu hỏi tương tự
DX
Xem chi tiết
HH
Xem chi tiết
TC
Xem chi tiết
H24
Xem chi tiết
KK
Xem chi tiết
DX
Xem chi tiết
TN
Xem chi tiết
QL
Xem chi tiết
DX
Xem chi tiết