Violympic toán 6

KK

chứng minh rằng nếu n là số tự nhiên thì n+1 và 2.n+1 đều là các số chính phương thì n là bội của số 24 . Mọi người giải giúp mình với , mình cảm ơn

 

AH
4 tháng 1 2021 lúc 23:36

Lời giải:

Đặt $n+1=a^2$ và $2n+1=b^2$ với $a,b$ là số tự nhiên.

Vì $2n+1$ lẻ nên $b^2$ lẻ. SCP lẻ chia $4$ dư $1$ nên $2n+1$ chia $4$ dư $1$

$\Rightarrow 2n\vdots 4$

$\Rightarrow n\vdots 2$

$\Rightarrow n+1=a^2$ lẻ. Ta biết SCP lẻ chia $8$ dư $1$ nên $n+1=a^2$ chia $8$ dư $1$

$\Rightarrow n\vdots 8(1)$

Mặt khác:

Nếu $n$ chia 3 dư $1$ thì $n+1$ chia $3$ dư $2$ (vô lý vì 1 SCP chia 3 dư 0 hoặc 1)

Nếu $n$ chia $3$ dư $2$ thì $2n+1$ chia $3$ dư $2$ (cũng vô lý)

Do đó $n$ chia hết cho $3(2)$ 

Từ $(1);(2)$ mà $(3,8)=1$ nên $n\vdots 24$ (đpcm)

Bình luận (0)
NH
6 tháng 1 2021 lúc 16:13

Vì 2n+1 là số chính phương lẻ nên 

n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8

Lại có

3n+2≡2(mod3)3n+2≡2(mod3)

Suy ra

n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)

Do đó

Bình luận (0)