Ôn tập chương II

HO

Tập xác định của hàm số \(y=\dfrac{x^2+1}{\left|2x-4\right|+\left|1+x\right|-\left|5-x\right|}\) có dạng \(\left(-\infty;a\right)\cup\left(b;+\infty\right)\). Tìm ab

AH
12 tháng 11 2017 lúc 11:37

Lời giải:

Ta xét các TH sau:

TH1: \(x\geq 5\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=2x-4\\ |x+1|=x+1\\ |5-x|=x-5\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=2x+2\)

Để hàm số đc xác định thì \(2x+2\neq 0\Leftrightarrow x\neq -1\), luôn đúng với \(x\geq 5\)

TH2: \(2< x< 5\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=2x-4\\ |x+1|=x+1\\ |5-x|=5-x\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=4x-8\)

Để hàm số đc xác định thì \(4x-8\neq 0\), điều này luôn đúng với \(2< x< 5\)

TH3: \(-1\leq x\leq 2\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=4-2x\\ |x+1|=x+1\\ |5-x|=5-x\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=0\)

(Không thỏa mãn)

TH4: \(x< -1\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=4-2x\\ |x+1|=-(x+1)\\ |5-x|=5-x\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=-2(x+1)\)

Để hàm số đc xác định thì \(-2(x+1)\neq 0\), điều này luôn đúng với mọi \(x< -1\)

Từ các TH trên , ta suy ra \(x\in (2; +\infty)\cup (-\infty; -1)\)

Vậy \(a=-1; b=2\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
MX
Xem chi tiết
LN
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết