Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm a để bpt \(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+a\) nghiệm đúng với mọi x thuộc \(\left[-1-\sqrt{15};-1+\sqrt{14}\right]\)
tìm m để bpt \(\frac{\left(5-m\right)x^2-2\left(m+1\right)x+1}{\sqrt{2x^2+x+1}}< 0\) có nghiệm
giải bpt :
a,\(\frac{\sqrt{51-2x-x^2}}{1-x}< 1\)
b, \(\sqrt{x^2-5x-14}\ge2x-1\)
Phương trình \(\sqrt{2-f\left(x\right)}=f\left(x\right)\) có tập nghiệm A = {1;2;3}. Phương trình \(\sqrt{2.g\left(x\right)-1}+\sqrt[3]{3.g\left(x\right)-2}=2.g\left(x\right)\) có tập nghiệm là B = {0;3;4;5} . Hỏi tập nghiệm của phương trình \(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)+1=f\left(x\right)+g\left(x\right)\)
có bao nhiêu phần tử?
A.1
B.4 C.6 D.7
(Em cần lời giải chi tiết ạ! Cảm ơn mọi người)
Câu 1: Tập hợp các giá trị thực của tham số m để phương trình \(\sqrt{x^2+2x+2m}=2x+1\) có hai nghiệm phân biệt là S = (a;b]. Khi đó P = a.b là....
Câu 2: Cho phương trình \(\sqrt{-x^2+4x-3}=\sqrt{2m+3x-x^2}\). Để phương trình có nghiệm thì m ϵ [a;b]. Giá trị \(a^2+b^2=?\)
Câu 3: Biết phương trình \(x^4-3mx^2+m^2+1=0\) có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\). Tính M = x1+x2+x3+x4+x1x2x3x4
giải bpt sau:
a, x2 -5x+\(\sqrt{x\left(5-x\right)}\) +2<0
b, 2\(\sqrt{1-\frac{2}{x}}+\sqrt{2x-\frac{8}{x}}\ge0\)
Câu 4: Tập nghiệm của phương trình \(\sqrt{x^2-2x}=\sqrt{2x-x^2}\) là:
A. \(S=\left\{0\right\}\) B. \(S=\varnothing\) C. \(S=\left\{0;2\right\}\) D. \(S=\left\{2\right\}\)
Câu 5: Phương trình \(x\left(x^2-1\right)\sqrt{x-1}=0\) có bao nhiêu nghiệm?
A. 0 B. 1 C. 2 D. 3
giải bpt :
\(\frac{\sqrt{2\left(x^2+7x+3\right)}-\sqrt{x^2+x-6}-3\sqrt{x+1}}{1-2\sqrt{x^2-x+1}}\ge0\)
1,Tìm m để pt có \(\sqrt{2x^2+mx}=3-x\)
a, 1 nghiệm
b, 2 nghiệm phân biệt
2,Tìm m để pt có 2 nghiệm phân biệt \(\sqrt{x+2}+\sqrt{6-x}-\sqrt{\left(x+2\right)\left(6-x\right)}=m\)