Cho bất phương trình: (x+2m)(x+1)>0. Tìm m để tập nghiệm của bất phương trình chứa (1;+∞)
Bài 3: Tìm m để bất phương trình: x2 - 2x + 1 - m2 ≤ 0 nghiệm đúng với ∀x ∈ [1; 2]. Bài 4: Tìm m để bất phương trình: (m - 1)x2 + (2 - m)x- 1 > 0 có nghiệm đúng với mọi∀x ∈ (1; 2). Bài 5: Tìm m để bất phương trình: 3(m - 2)x2 + 2(m + 1)x + m - 1 < 0 có nghiệm đúngvới mọi ∀x ∈ (-1; 3). Bài 6: Tìm m để bất phương trình m2 - 2mx + 4 > 0 có nghiệm đúng với mọi ∀x ∈ (-1;0,5)
Tìm tập nghiệm của bất phương trình:\(2\left(x-4\right)\sqrt{2x+1}\ge x\sqrt{x^2+1}+x^3+x^2-3x-8\)
1) Điều kiện của m để bất phương trình \(\left(m^2-m\right)x\ge1-m\) có nghiệm là :
2) Hệ bất phương trình \(\left\{{}\begin{matrix}2x+7< 8x-1\\-2x+m+5\ge0\end{matrix}\right.\) vô nghiệm khi:
3) Hệ bất phương trình \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge x^2+7x+1\\2m-5x\le8\end{matrix}\right.\) vô nghiệm khi:
4) Tập nghiệm của bất phương trình \(\left(x-1\right)\left(x^2-3x+2\right)< 0\) là :
5) Tập nghiệm của bất phương trình \(\left(x+3\right)\left(x^2+4x+3\right)\ge0\) là :
6) Tập nghiệm của bất phương trình \(\frac{x^2-x+1}{x-1}\ge0\) là :
Tập nghiệm của bất phương trình \(\dfrac{x^2+x-1}{1-x}-x\) là
Tập nghiệm của bất phương trình : \(\dfrac{x-1}{2-x}\ge0\) là ?
Cho hệ bất phương trình:Điểm nào thuộc miền nghiệm của bất phương trình
tập nghiệm của bất phương trình: (x-2)2 ≥ (\(\sqrt{x-1}\) -1)2 (2x-1) là":