pt <=> a\(^2\)-12-a=o giải a=4 ,a=-3(loại)
ta có \(\sqrt{x+4}+\sqrt{x-4}=4\)--> x=5
pt <=> a\(^2\)-12-a=o giải a=4 ,a=-3(loại)
ta có \(\sqrt{x+4}+\sqrt{x-4}=4\)--> x=5
Giải pt sau :
1, \(\sqrt{x+1}+\sqrt{4-x}+\sqrt{\left(x+1\right)\left(4-x\right)}=5\)
2, \(\sqrt{x+4}+\sqrt{x-4}=2x-12+2\sqrt{x^2-16}\)
3, \(\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\)
4, \(\frac{4}{x+\sqrt{x^2+x}}-\frac{1}{x-\sqrt{x^2+x}}=\frac{3}{x}\)
5, \(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
Gải phương trình sau
a)\(\sqrt{2x^2+4x+1}=1-x^2-2x\)
b)\(\sqrt{x+4}+\sqrt{x-4}=2x+2\sqrt{x^2-16}\)
c) (x+4)(x+1)-3\(\sqrt{x^2+x+2}=\sqrt{3x^2+3x}\)
Giải các phương trình sau
\(\sqrt{x^2+x+12}=8-x\)
\(\sqrt{x^2+3x-1}=4-x\)
\(\sqrt{x^2-3x}=\sqrt{2x-1}\)
\(\sqrt{x^2+2x+4}=\sqrt{2-x}\)
\(\sqrt{x^2+2x+4}=\sqrt{2x^2-x}\)
\(\sqrt{2x-1}=x-2\)
Giải các phương trình sau
a/ \(\left(4x-1\right)\sqrt{x^3+1}=2x^3+2x+1\)
b/ \(\left(x+1\right)\sqrt{x^2-2x+3}=x^2+1\)
c/ \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
d/ \(x^2+4x=\left(x+2\right)\sqrt{x^2-2x+4}\)
giải các PT sau :
a) \(\left|2x+3\right|-\left|x\right|+\left|x-1\right|=2x+4\)
b) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
d) \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)
e) \(\sqrt{4x+3}+\sqrt{2x+1}=6x+\sqrt{8x^2+10x+3}-16\)
f)\(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
giải pt
a) \(\sqrt{x+1}+\sqrt{x}+2\sqrt{x^2+x}=1-2x\)
b) \(\sqrt{x-2}-\sqrt{x+2}=2\sqrt{x^2-4}-2x+2\)
c) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
d) \(2\sqrt{x}\left(\sqrt{x+1}-2\sqrt{x}\right)+\sqrt{x+1}+\sqrt{x}=1-6x\)
e) \(x^2+2x+\sqrt{x+3}+2x\sqrt{x+3}=9\)
Giải các phương trình sau
a/ \(\sqrt{2x+3}+\sqrt{x+1}=3x+2.\sqrt{\left(2x+3\right)\left(x+1\right)}-16\)
b/ \(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+9}\)
c/ \(\sqrt{x+1}+\sqrt{4-x}+\sqrt{\left(x+1\right)\left(4-x\right)}=5\)
Giải hpt \(\left\{{}\begin{matrix}\sqrt{y+3x}+\sqrt{2x+7y}=\sqrt{5x-y}+3\sqrt{x}\\x-4-\sqrt{y-2}=\sqrt{x^3-10x^2+33x-34}-\sqrt{y^3-9y^2+24y-16}\end{matrix}\right.\)
Giải phương trình sau: \(\sqrt{3x^{^2}+6x+16}+\sqrt{x^{^2}+2x}=2\sqrt{x^{^2}+2x+4}\)