\(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
=\(\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
=\(\sqrt{5}+1+\sqrt{5}-1\)=2\(\sqrt{5}\)
=\(\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5-1}\right)^2}\)
=\(\sqrt{5}+1+\sqrt{5}-1\)
=\(2\sqrt{5}\)
\(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5}+1+\sqrt{5}-1\)
\(=2\sqrt{5}\)
\(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
= \(\sqrt{6+4,472135955}+\sqrt{6-4,472135955}\)
\(=\sqrt{10,472135955}+\sqrt{2,4,472135955}\)
\(=3,236067977+1,572302756\)
= 4,808370733 \(\approx\) 5