Violympic toán 9

H24

\(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{\left(x-1\right)^2}+\sqrt[3]{x^2-1}=1\)

Dùng pp đặt ẩn phụ ạ. Em cảm ơn ạ.

AH
18 tháng 6 2021 lúc 22:48

Lời giải:
Đặt $\sqrt[3]{x+1}=a;\sqrt[3]{x-1}=b$ thì pt trở thành:

\(\left\{\begin{matrix} a^2+b^2+ab=1\\ a^3-b^3=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2+ab+b^2=1\\ (a-b)(a^2+ab+b^2)=2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a^2+ab+b^2=1\\ a-b=2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} (a-b)^2+3ab=1\\ a-b=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a(-b)=1\\ a+(-b)=2\end{matrix}\right.\)

Theo đl Viet đảo thì $a,-b$ là nghiệm của pt $X^2-2X+1=0$

$\Rightarrow a=-b=1$

$\Leftrightarrow \sqrt[3]{x+1}=1; \sqrt[3]{x-1}=-1$

$\Rightarrow x=0$

Vậy.........

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
CT
Xem chi tiết
H24
Xem chi tiết
NY
Xem chi tiết
H24
Xem chi tiết
CT
Xem chi tiết
H24
Xem chi tiết