\(A=\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\)
\(A^3=\left(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\right)^3\)
\(=9+\sqrt{80}+9-\sqrt{80}+3\sqrt[3]{9+\sqrt{80}}.\sqrt[3]{9-\sqrt{80}}\left(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\right)\)\(=18+3.A\)
<=> \(A^3-3A-18=0\Leftrightarrow\left(A-3\right)\left(A^2+3A+6\right)=0\)
<=> A=3
vì \(A^2+3A+6=\left(A+\frac{3}{2}\right)^2+\frac{15}{4}>0\)
Vậy A là một số nguyên