a. Ta có:
\(72^{45}-72^{44}=72^{44}.\left(72-1\right)=72^{44}.71\)
\(72^{44}-72^{43}=72^{43}.\left(72-1\right)=72^{43}.71\)
Vì \(72^{44}.71>72^{43}.71\)
\(\Rightarrow72^{45}-72^{44}>72^{44}-72^{43}\)
\(A = 1 + 2 + 2^2 + 2^3+ ... + 2^{63}\)
\(2A=2+2^2+2^3+...+2^{63}+2^{64}\)
\(2A-A=2+2^2+2^3+...+2^{63}+2^{64}-\left(1+2+2^2+2^3+...+2^{63}\right)\)
\(\Rightarrow A=2^{64}-1\)
\(B = 5 + 5^2 + 5^3 + 5^4 +...+ 5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=5^2+5^3+5^4+...+5^{100}+5^{101}-5-5^2-5^3-...-5^{99}-5^{100}\)
\(4B=5^2+5^3+5^4+...+5^{100}+5^{101}-\left(5+5^2+5^3+...+5^{99}+5^{100}\right)\)
\(4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)