Sửa đề: \(98+99+\dfrac{142}{144}\) \(\rightarrow\dfrac{98}{99}+\dfrac{143}{144}\)
Giải:
\(A=\dfrac{2}{3}+\dfrac{14}{15}+\dfrac{34}{35}+\dfrac{62}{63}+\dfrac{98}{99}+\dfrac{143}{144}+\dfrac{194}{195}\)
\(A=\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{15}\right)+\left(1-\dfrac{1}{35}\right)+...+\left(1-\dfrac{1}{195}\right)\)
\(A=7-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{195}\right)\)
\(A=7-\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{13.15}\right)\)
\(A=7-\left[\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{13.15}\right)\right]\)
\(A=7-\left[\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)\right]\)
\(A=7-\left[\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{15}\right)\right]\)
\(A=7-\left[\dfrac{1}{2}.\dfrac{14}{15}\right]\)
\(A=7-\dfrac{7}{15}\)
\(A=\dfrac{98}{15}\)
Chúc bạn học tốt!