Cho a2 - b2= 4c2. Chứng minh rằng: (5a - 3b + 8c).(5a - 3b - 8c) = (3a - 5b)2
\(\dfrac{5a+3b}{3a+b+2c}\)+\(\dfrac{5b+3c}{3b+c+2a}\)+\(\dfrac{5c+3a}{3c+a+2b}\)\(\ge4\) a,b,c là độ 3 cạnh tam giác
a3-3a2+5a-2011=b3-3b2 +5b+2005
a+b=?
Cho a, b, c > 0:
CMR: \(\frac{1}{5a+b}+\frac{1}{5b+c}+\frac{1}{5c+a}\ge\frac{1}{a+3b+2c}+\frac{1}{b+3c+2a}+\frac{1}{c+3a+2b}\)
Cho các số thực dương a,b,c. Chứng minh rằng :
\(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\)< \(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\)
cho a và b lần lượt thỏa mãn các hệ thức sau
a3-3a2+5a-2020=0 và b3-3b2=5b=2014
tính a+b
hai số a,b lần lượt thỏa mãn các hệ thức sau:
a3-3a2 + 5a - 17=0 và b3 - 3b2 + 5b + 11 = 0. Hãy tính a+b
Cho a,b,c là các số dương thỏa mãn: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=6\). CMR:
a) \(\frac{1}{a+b+2c}+\frac{1}{b+c+2a}+\frac{1}{c+a+2b}\le3\)
b) \(\frac{1}{3a+3b+2c}+\frac{1}{3a+2b+3c}+\frac{1}{2a+3b+2c}\le\frac{3}{2}\)
Cho a và b là các số tự nhiên thỏa mãn 2a2+a=3b2+b
Chứng minh rằng : a-b và 3a+3b+1 là số chính phương/