A= \(\frac{3\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{\left(2^2-1\right)}=2^{32-1}\)
mà B= \(2^{32}\)
=> A<B
A= \(\frac{3\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{\left(2^2-1\right)}=2^{32-1}\)
mà B= \(2^{32}\)
=> A<B
Cho a^2+b^2+c^2+3=2(a+b+c)
So sánh a với 1
A=80.(3^4+1)(3^8+1)(3^16+1)(3^32+1) và B=3^64 So sánh A và B
Cho A = 1+1/2+1/3+..+1/2016
B = 1+1/3+1/5+..+1/4025
so sánh A/B vơis 1+2013/2014
So sánh
A=3^32-1
B=(3+1).(3^2+1).(3^4+1).(3^8+1).(3^16 +1).2
So sánh :
A = ( 3 + 1 ) ( 32 + 1 ) ( 34 + 1) ( 38 + 1 ) ( 316 + 1 )
và B = 332 - 1
a) Rút gọn:
P = \(\left(2-\frac{x-1}{2x-3}\right)\div\left(\frac{6x+1}{2x^2-x-3}+\frac{x}{x+1}\right)\)
b) So sánh P với \(\frac{3}{2}\)
21) 125x3 -1
22) 4x4 - 9x2
23) 64x2 - 25y4
24) 4( a + b )2 - 9( a - b )2
25) 8( x + 1 )3 - 27( x - 1 )3
Rút gọn : a) \(\dfrac{6^9.2^{10}+12^{10}}{2^{19}.27^3+15.4^9.9^4}\)
b) \(\dfrac{1+x^2+x^4+...+x^{22}+x^{24}+x^{26}}{1+x^4+x^8+...+x^{16}+x^{20}+x^{24}}\)
So sánh 2 số:
a) A= (2+1)(2^2+1)(2^4+1)(2^16) và B= 2^32-1