Dạng toán hù dọa điển hình, nhìn rất đáng sợ và nếu nghĩ cách tính con tích phân kia thì chắc chắn là mắc bẫy của người ra đề.
Chúng ta nhớ lại quy tắc quen thuộc của nguyên hàm:
\(F\left(x\right)=\int f\left(x\right)dx\Leftrightarrow F'\left(x\right)=f\left(x\right)\) (1)
Cho nên gặp dạng tích phân có biến ở cận theo kiểu:
\(f\left(x\right)=\int\limits^{u\left(x\right)}_af\left(t\right).dt\) thì cứ đạo hàm 2 vế, nhưng lưu ý hàm \(f\left(t\right)\) là hàm hợp theo biến \(x\) (do khi thay cận thì \(t\) là một hàm của \(x\) với \(t=u\left(x\right)\) nên cần đạo hàm 2 vế theo quy tắc đạo hàm hàm hợp:
\(f'\left(x\right)=f\left(t\right).u'\left(x\right)=f\left(u\left(x\right)\right).u'\left(x\right)\)
Không cần quan tâm đến cận chỉ chứa hằng số, vì khi thay vào kết quả tích phân sẽ ra một hằng số, mà đạo hàm của hằng số bằng 0 nên sẽ mất.
Dài dòng quá, quay lại bài toán, đạo hàm 2 vế ta được:
\(f'\left(x\right)=\left(\sqrt{\left(x^3+1\right)^2+12}-4\right)^{2017}.3x^2\)
\(f'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}3x^2=0\\\sqrt{\left(x^3+1\right)^2+12}-4=0\left(2\right)\end{matrix}\right.\)
Do \(3x^2\ge0\) \(\forall x\) nên \(f'\left(x\right)\) ko đổi dấu khi đi qua \(x=0\) (ko phải cực trị)
\(\left(2\right)\Leftrightarrow\left(x^3+1\right)^2=4\Rightarrow\left[{}\begin{matrix}x=1\\x=-\sqrt[3]{3}\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)\) có 2 cực trị