Bài 1. Tập hợp các số hữu tỉ

QL

Sắp xếp các số hữu tỉ sau theo thứ tự từ bé đến lớn.

\(5\frac{1}{4}; - 2;3,125; - \frac{3}{2}.\)

HM
18 tháng 9 2023 lúc 9:53

Cách 1: Ta có:

 \(\begin{array}{l}5\frac{1}{4} = \frac{{5.4 + 1}}{4} = \frac{{21}}{4} = \frac{{42}}{8}\\ - 2 = \frac{{ - 16}}{8}\\3,125 = \frac{{3125}}{{1000}} = \frac{{25}}{8}\\ - \frac{3}{2} = \frac{{ - 12}}{8}\end{array}\)

Vì -16 < -12 < 25 < 42 nên \(\frac{{ - 16}}{8} < \frac{{ - 12}}{8} < \frac{{25}}{8} < \frac{{42}}{8}\) hay -2 < \(\frac{{ - 3}}{2}\) < 3,125 < \(5\frac{1}{4}\)

Vậy các số hữu tỉ trên sắp xếp theo thứ tự từ bé đến lớn là: -2; \(\frac{{ - 3}}{2}\); 3,125; \(5\frac{1}{4}\)

Cách 2: Ta có: \(5\frac{1}{4}\)= 5,25

\(\frac{{ - 3}}{2}\)= -1,5

Vì -2 < -1,5 < 0 < 3,125 < 5,25 nên -2 < \(\frac{{ - 3}}{2}\) < 3,125 < \(5\frac{1}{4}\)

Vậy các số hữu tỉ trên sắp xếp theo thứ tự từ bé đến lớn là: -2; \(\frac{{ - 3}}{2}\); 3,125; \(5\frac{1}{4}\)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết