Xét khai triển:
\(\left(1-x\right)^{2019}=C_{2019}^0-xC_{2019}^1+x^2C_{2019}^2-...-x^{2019}C_{2019}^{2019}\)
Đạo hàm 2 vế:
\(-2019\left(1-x\right)^{2018}=-C_{2019}^1+2xC_{2019}^2-...-2019x^{2018}C_{2019}^{2019}\)
\(\Rightarrow2019x\left(1-x\right)^{2018}=xC_{2019}^1-2x^2C_{2019}^2+...+2019x^{2019}C_{2019}^{2019}\)
Đạo hàm 2 vế:
\(2019\left(1-x\right)^{2018}-2018.2019x\left(1-x\right)^{2017}=C_{2019}^1-2^2xC_{2019}^2+...+2019^2x^{2018}C_{2019}^{2019}\)
Thay \(x=1\)
\(\Rightarrow0=C_{2019}^1-2^2C_{2019}^2+...+2019^2C_{2019}^{2019}\)
\(\Rightarrow S=0\)