Chương I - Căn bậc hai. Căn bậc ba

LE

Rút gọn: \(\sqrt{12}-\dfrac{3+\sqrt{3}}{\sqrt{3}+1}+\dfrac{11}{2\sqrt{3}+1}\)

NT
9 tháng 2 2021 lúc 11:44

Ta có: \(\sqrt{12}-\dfrac{3+\sqrt{3}}{\sqrt{3}+1}+\dfrac{11}{2\sqrt{3}+1}\)

\(=2\sqrt{3}-\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}+\dfrac{11\left(2\sqrt{3}-1\right)}{\left(2\sqrt{3}+1\right)\left(2\sqrt{3}-1\right)}\)

\(=2\sqrt{3}-\sqrt{3}+\left(2\sqrt{3}-1\right)\)

\(=\sqrt{3}+2\sqrt{3}-1\)

\(=3\sqrt{3}-1\)

Bình luận (0)
NL
9 tháng 2 2021 lúc 11:45

Ta có : \(\sqrt{12}-\dfrac{3+\sqrt{3}}{\sqrt{3}+1}+\dfrac{11}{2\sqrt{3}+1}\)

\(=\sqrt{12}-\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}+\dfrac{\left(2\sqrt{3}+1\right)\left(2\sqrt{3}-1\right)}{2\sqrt{3}+1}\)

\(=\sqrt{12}-\sqrt{3}+2\sqrt{3}-1=2\sqrt{3}-\sqrt{3}+2\sqrt{3}-1\)

\(=3\sqrt{3}-1\)

Bình luận (0)

Các câu hỏi tương tự
LL
Xem chi tiết
LL
Xem chi tiết
LL
Xem chi tiết
NM
Xem chi tiết
LG
Xem chi tiết
NT
Xem chi tiết
LL
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết