A=\(\left(\dfrac{2}{x+2}+\dfrac{2+x}{x-2}+\dfrac{x^2}{4-x^2}\right):\left(1-\dfrac{x}{x-2}\right)=\left(\dfrac{2}{x+2}+\dfrac{2+x}{x-2}+\dfrac{x^2}{\left(2+x\right)\left(2-x\right)}\right):\left(\dfrac{x-2}{x-2}-\dfrac{x}{x-2}\right)=\left(\dfrac{2}{x+2}+\dfrac{2+x}{x-2}-\dfrac{x^2}{\left(x+2\right)\left(x-2\right)}\right):\left(\dfrac{x-2-x}{x-2}\right)\)
ĐKXD\(\) x+2 khác 0 =>x khác -2
x-2 khác 0 =>x khác 2
=\(\left(\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{\left(2+x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{-2}{x-2}=\left(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}+\dfrac{2x+x^2+4+2x}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2}{\left(x+2\right)\left(x-2\right)}\right).\dfrac{x-2}{-2}=\dfrac{2x-4+2x+x^2+4+2x-x^2}{\left(x+2\right)\left(x-2\right)}.\dfrac{x-2}{-2}=\dfrac{6x}{\left(x+2\right)\left(x-2\right)}.\dfrac{x-2}{-2}=\dfrac{6x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)\left(-2\right)}=\dfrac{3x}{-\left(x+2\right)}\)