Violympic toán 8

NT

Rút gọn biểu thức sau:

\(A=\left(1+\dfrac{2}{1.4}\right).\left(1+\dfrac{2}{2.5}\right).\left(1+\dfrac{2}{3.6}\right).....\left(1+\dfrac{2}{x\left(x+3\right)}\right)\)

NL
1 tháng 12 2018 lúc 19:46

\(A=\left(\dfrac{6}{1.4}\right)\left(\dfrac{12}{2.5}\right)\left(\dfrac{20}{3.6}\right)\left(\dfrac{x^2+3x+2}{x\left(x+3\right)}\right)\)

\(A=\dfrac{2.3}{1.4}.\dfrac{3.4}{2.5}.\dfrac{4.5}{3.6}...\dfrac{\left(x+1\right)\left(x+2\right)}{x\left(x+3\right)}\)

\(A=\dfrac{2.3.4...\left(x+1\right)}{1.2.3...x}.\dfrac{3.4.5...\left(x+2\right)}{4.5.6...\left(x+3\right)}=\left(x+1\right)\dfrac{3}{x+3}=\dfrac{3\left(x+1\right)}{x+3}\)

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
TV
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
NT
Xem chi tiết
NS
Xem chi tiết