Ôn tập chương VI

DA

Rút gọn biểu thức: \(\dfrac{x^4y-xy^4}{x^2+xy+y^2}\)

a) Thực hiện phép tính: \(\dfrac{2xy}{x^2-y^2}+\dfrac{x-y}{2x+2y}+\dfrac{y}{y-x}\)

b) Tìm x biết: \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)


VT
13 tháng 12 2017 lúc 18:32

\(\dfrac{x^4y-xy^4}{x^2+xy+y^2}=\dfrac{xy\left(x^3-y^3\right)}{x^2+xy+y^2}\)

\(=\dfrac{xy\left(x-y\right)\left(x^2+xy+y^2\right)}{x^2+xy+y^2}=xy\left(x-y\right)\)

a ) \(\dfrac{2xy}{x^2-y^2}+\dfrac{x-y}{2x+2y}+\dfrac{y}{y-x}\)

\(=\dfrac{2xy}{\left(x-y\right)\left(x+y\right)}+\dfrac{\left(x-y\right)}{2\left(x+y\right)}-\dfrac{y}{x-y}\)

\(=\dfrac{4xy+x^2-2xy+y^2-2y\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{4xy+x^2-2xy+y^2-2xy-2y^2}{2\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x^2-y^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{1}{2}\)

b ) \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+2-x+2\right)=0\)

\(\Leftrightarrow4\left(x+2\right)=0\)

\(\Leftrightarrow x=2\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
BK
Xem chi tiết
NT
Xem chi tiết
LN
Xem chi tiết
SK
Xem chi tiết
NV
Xem chi tiết