Violympic toán 8

DH

Rút gọn biểu thức:

\(a,\left(\dfrac{x}{xy-y^2}+\dfrac{2x-y}{xy-x^2}\right):\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(b,\left(\dfrac{x+y}{2x-2y}-\dfrac{x-y}{2x+2y}-\dfrac{2y^2}{y-x}\right):\dfrac{2y}{x-y}\)

NT
7 tháng 12 2022 lúc 9:11

a: \(=\left(\dfrac{x}{y\left(x-y\right)}-\dfrac{2x-y}{x\left(x-y\right)}\right):\dfrac{x+y}{xy}\)

\(=\dfrac{x^2-2xy+y^2}{xy\left(x-y\right)}\cdot\dfrac{xy}{x+y}\)

\(=\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x-y}{x+y}\)

b: \(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\cdot\dfrac{x-y}{2y}\)

\(=\dfrac{4xy+4y^2}{2\left(x+y\right)}\cdot\dfrac{1}{2y}=\dfrac{4y\left(x+y\right)}{4y\left(x+y\right)}=1\)

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
MM
Xem chi tiết
PH
Xem chi tiết
TN
Xem chi tiết
PJ
Xem chi tiết
BC
Xem chi tiết
PN
Xem chi tiết