Chương I - Căn bậc hai. Căn bậc ba

AD

Rút gọn biểu thức

a) A= \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

b) B= \(\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}\)

c) C= \(\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}\)

AH
29 tháng 7 2020 lúc 20:24

Lời giải:

a)

\(\frac{2A}{\sqrt{2}}=\frac{4+2\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{4-2\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}=\frac{3+1+2\sqrt{3}}{2+\sqrt{3+1+2\sqrt{3}}}+\frac{3+1-2\sqrt{3}}{2-\sqrt{3+1-2\sqrt{3}}}\)

\(=\frac{(\sqrt{3}+1)^2}{2+\sqrt{(\sqrt{3}+1)^2}}+\frac{(\sqrt{3}-1)^2}{2-\sqrt{(\sqrt{3}-1)^2}}=\frac{(\sqrt{3}+1)^2}{2+\sqrt{3}+1}+\frac{(\sqrt{3}-1)^2}{2-(\sqrt{3}-1)}\)

\(=\frac{(\sqrt{3}+1)^2}{\sqrt{3}(\sqrt{3}+1)}+\frac{(\sqrt{3}-1)^2}{\sqrt{3}(\sqrt{3}-1)}=\frac{\sqrt{3}+1}{\sqrt{3}}+\frac{\sqrt{3}-1}{\sqrt{3}}=2\)

$\Rightarrow A=\sqrt{2}$

b)

\(B=\sqrt{10+2\sqrt{15}-2\sqrt{6}-2\sqrt{10}}=\sqrt{(8+2\sqrt{15})+2-2\sqrt{2}(\sqrt{3}+\sqrt{5})}\)

\(=\sqrt{(\sqrt{3}+\sqrt{5})^2+2-2\sqrt{2}(\sqrt{3}+\sqrt{5})}\)

\(=\sqrt{(\sqrt{3}+\sqrt{5}-\sqrt{2})^2}=\sqrt{3}+\sqrt{5}-\sqrt{2}\)

c)

\(C=\frac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{x^2-4x+4}}=\frac{\sqrt{(x-1)-2\sqrt{x-1}+1}+\sqrt{(x-1)+2\sqrt{x-1}+1}}{\sqrt{(x-2)^2}}\)

\(=\frac{\sqrt{(\sqrt{x-1}-1)^2}+\sqrt{(\sqrt{x-1}+1)^2}}{|x-2|}=\frac{|\sqrt{x-1}-1|+|\sqrt{x-1}+1|}{|x-2|}\)

Bình luận (0)

Các câu hỏi tương tự
ET
Xem chi tiết
NG
Xem chi tiết
DQ
Xem chi tiết
QE
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết
TT
Xem chi tiết
QE
Xem chi tiết
QE
Xem chi tiết