Violympic toán 8

BH

rút gọn biểu thức: (27^10-5.81^4.3^12+4.9^8.3^8):41.3^24

giải phương trình: 4x^2-9-(2x+3)(2x-1)=0

x^3+x^2-4x=4

x^2(x^2+4)-x^2-4=0

(3x-3)^2=(x+5)^2

(2x-3)^2==(x+5)^2

x^2(x-1)-(4x^2+8x-4)=0

HK
29 tháng 11 2017 lúc 22:45

Giải phương trình:

\(4x^2-9-\left(2x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(2x+3\right)-\left(2x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(2x-3-2x+1\right)=0\)

\(\Leftrightarrow\left(2x-3\right).\left(-2\right)=0\)

\(\Leftrightarrow2x-3=0\)

\(\Leftrightarrow x=\dfrac{-3}{2}\)

Vậy nghiệm của phương trình là \(x=\dfrac{-3}{2}\) .

\(x^3+x^2-4x=4\)

\(\Leftrightarrow x^3+x^2-4x-4=0\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)

Vậy tập nghiện của phương trình là S= { -2; -1; 2}.

\(x^2\left(x^2+4\right)-x^2-4=0\)

\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow x^2-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là S= {-1; 1}.

\(\left(3x-3\right)^2=\left(x+5\right)^2\)

\(\Leftrightarrow\left(3x-3\right)^2-\left(x+5\right)^2=0\)

\(\Leftrightarrow\left(3x-3-x-5\right)\left(3x-3+x+5\right)=0\)

\(\Leftrightarrow\left(2x-8\right)\left(4x+2\right)=0\)

\(\Leftrightarrow2\left(x-4\right).2\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\2x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là S\(=\left\{\dfrac{-1}{2};4\right\}\) .

\(\left(2x-3\right)^2=\left(x+5\right)^2\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(x+5\right)^2=0\)

\(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)

\(\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=\dfrac{-2}{3}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là S\(=\left\{\dfrac{-2}{3};8\right\}\) .

\(x^2\left(x-1\right)-\left(4x^2+8x-4\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2+2x-1\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2-4\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy nghiệm của phương trình là x=1.

Bình luận (1)
ST
30 tháng 11 2017 lúc 8:25

(\(27^{10}-5.81^4.3^{12}+4.9^8.3^8\)):\(\left(41.3^{24}\right)\)

\(=\left[\left(3^3\right)^{10}-5.\left(3^4\right)^4.3^{12}+4.\left(3^2\right)^8.3^8\right]:\left(41.3^{24}\right)\)

\(=\left(3^{30}-5.3^{28}+4.3^{24}\right):\left(41.3^{24}\right)\)

\(=\left[3^{24}\left(3^6-5.3^4+4\right)\right]:\left(41.3^{24}\right)\)

\(=\left(3^{24}.328\right):\left(41.3^{24}\right)\)

\(=328:41=8\)

Bình luận (0)

Các câu hỏi tương tự
TB
Xem chi tiết
DD
Xem chi tiết
MO
Xem chi tiết
ES
Xem chi tiết
ND
Xem chi tiết
TD
Xem chi tiết
NC
Xem chi tiết
NN
Xem chi tiết
HA
Xem chi tiết