Chương I - Căn bậc hai. Căn bậc ba

HC

Rút gọn: \(A=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+\sqrt{1+\frac{1}{4^2}+\frac{1}{5^2}}+...+\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}\)

NL
19 tháng 6 2019 lúc 9:41

\(\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}=\sqrt{\frac{k^2\left(k+1\right)^2+\left(k+1\right)^2+k^2}{k^2\left(k+1\right)^2}}=\sqrt{\frac{k^2\left(k+1\right)^2+2k\left(k+1\right)+1}{k^2\left(k+1\right)^2}}\)

\(=\sqrt{\frac{\left[k\left(k+1\right)+1\right]^2}{k^2\left(k+1\right)^2}}=\frac{k\left(k+1\right)+1}{k\left(k+1\right)}=1+\frac{1}{k\left(k+1\right)}\)

\(\Rightarrow A=1+\frac{1}{2.3}+1+\frac{1}{3.4}+...+1+\frac{1}{k\left(k+1\right)}\)

\(=k-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{k}-\frac{1}{k+1}\)

\(=k-1+\frac{1}{2}-\frac{1}{k+1}=...\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
HL
Xem chi tiết
NH
Xem chi tiết
LN
Xem chi tiết
TT
Xem chi tiết
CN
Xem chi tiết