Bài 3: Đường tròn trong mặt phẳng tọa độ

QL

Cho điểm \({M_0}\left( {{x_0};{y_0}} \right)\) nằm trên đường tròn \((C)\) tâm \(I(a;b)\)và cho điểm\(M(x;y)\) tùy ý trong mặt phẳng Oxy. Gọi \(\Delta \) là tiếp tuyến với \((C)\) tại \({M_0}\)

a) Viết biểu thức tọa độ của hai vt \(\overrightarrow {{M_0}M} \) và \(\overrightarrow {{M_0}I} \)

b) Viết biểu thức tọa độ  của tích vô hướng của hai vt \(\overrightarrow {{M_0}M} \) và \(\overrightarrow {{M_0}I} \)

c) Phương trình \(\overrightarrow {{M_0}M} .\overrightarrow {{M_0}I}  = 0\)là phương trình của đường thẳng nào?

HM
27 tháng 9 2023 lúc 0:06

a) Biểu thức tọa độ của hai vt \(\overrightarrow {{M_0}M} \) và \(\overrightarrow {{M_0}I} \) là \(\overrightarrow {{M_0}M}  = \left( {x - {x_0};y - {y_0}} \right)\), \(\overrightarrow {{M_0}I}  = \left( {a - {x_0};b - {y_0}} \right)\)

b) Ta có:

\(\overrightarrow {{M_0}M} .\overrightarrow {{M_0}I}  = \left( {x - {x_0}} \right)\left( {a - {x_0}} \right) + \left( {b - {y_0}} \right)\left( {y - {y_0}} \right)\)

c) \(\overrightarrow {{M_0}M} .\overrightarrow {{M_0}I}  = 0 \Rightarrow \overrightarrow {{M_0}M}  \bot \overrightarrow {{M_0}I} \)

Mà \({M_0}I\) là đoạn thẳng nối tâm với điểm nằm ngoài

Vậy ta thấy pt đường thẳng \(M{M_0}\) là tiếp tuyến của đường tròn tại điểm \({M_0}\)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết