Đại số lớp 8

NH

phân tích đa thức thành nhân tử :

A\(=\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)

DT
2 tháng 11 2016 lúc 13:23

A = (b - c)³ + (c - a)³ + (a - b)³

Áp dụng hằng đẳng thức : a³ + b³ = (a + b)³ - 3ab(a + b) :

A = [(b - c)³ + (c - a)³] + (a - b)³

= [(b - c) + (c - a)]³ - 3(b - c)(c - a)[(b - c) + (c - a)] + (a - b)³

= (b - a)³ - 3(b - c)(c - a)(b - a) + (a - b)³

= [- (a - b)³] - 3(b - c)(c - a)[- (a - b)] + (a - b)³

= - (a - b)³ + 3(a - b)(b - c)(c - a) + (a - b)³

= 3(a - b)(b - c)(c - a)A = (b - c)³ + (c - a)³ + (a - b)³

Áp dụng hằng đẳng thức : a³ + b³ = (a + b)³ - 3ab(a + b) :

A = [(b - c)³ + (c - a)³] + (a - b)³

= [(b - c) + (c - a)]³ - 3(b - c)(c - a)[(b - c) + (c - a)] + (a - b)³

= (b - a)³ - 3(b - c)(c - a)(b - a) + (a - b)³

= [- (a - b)³] - 3(b - c)(c - a)[- (a - b)] + (a - b)³

= - (a - b)³ + 3(a - b)(b - c)(c - a) + (a - b)³

= 3(a - b)(b - c)(c - a)A = (b - c)³ + (c - a)³ + (a - b)³

Áp dụng hằng đẳng thức : a³ + b³ = (a + b)³ - 3ab(a + b) :

A = [(b - c)³ + (c - a)³] + (a - b)³

= [(b - c) + (c - a)]³ - 3(b - c)(c - a)[(b - c) + (c - a)] + (a - b)³

= (b - a)³ - 3(b - c)(c - a)(b - a) + (a - b)³

= [- (a - b)³] - 3(b - c)(c - a)[- (a - b)] + (a - b)³

= - (a - b)³ + 3(a - b)(b - c)(c - a) + (a - b)³

= 3(a - b)(b - c)(c - a)

Bình luận (0)

Các câu hỏi tương tự
MH
Xem chi tiết
TU
Xem chi tiết
DD
Xem chi tiết
PG
Xem chi tiết
NT
Xem chi tiết
CG
Xem chi tiết
PP
Xem chi tiết
MD
Xem chi tiết
NT
Xem chi tiết