\(B=x^3+3x^2-4\)
\(B=x^3-x^2+4x^2-4\)
\(B=x^2\left(x-1\right)+4\left(x^2-1\right)\)
\(B=x^2\left(x-1\right)+4\left(x+1\right)\left(x-1\right)\)
\(B=\left(x-1\right)\left(x^2+4x+4\right)\)
\(B=\left(x-1\right)\left(x+2\right)^2\)
\(B=x^3+3x^2-4\)
\(B=x^3-x^2+4x^2-4\)
\(B=x^2\left(x-1\right)+4\left(x^2-1\right)\)
\(B=x^2\left(x-1\right)+4\left(x+1\right)\left(x-1\right)\)
\(B=\left(x-1\right)\left(x^2+4x+4\right)\)
\(B=\left(x-1\right)\left(x+2\right)^2\)
1/ Phân tích thành nhân tử: \(A=a^2b^2\left(b-a\right)+b^2c^2\left(c-b\right)+c^2a^2\left(a-c\right)\)
2/ Giải phương trình: \(\left(17x-5\right)^2+\left(6x-4\right)\left(17x-5\right)+\left(3x-2\right)^2=0\)
Phan tich da thuc sau thanh nhan tu:
a) \(a\left(b+c\right)^2+b\left(c+a\right)^2+c\left(a+b\right)^2\)
b)\(a^4+b^4+c^4-2a^2b^2-2a^2c^2-2c^2b^2\)
Phân tích các đa thức sau thành nhân tử:
a) \(yz.\left(y+z\right)+xz.\left(z-x\right)-xy.\left(x+y\right)\)
b) \(2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc\)
c) \(y.\left(x-2z\right)^2+8xyz+x.\left(y-2z\right)^2-2z.\left(x+y\right)^2\)
Phân tích đa thức thành nhân tử:
a. \(x^4+5x^3+10x-4\)
b. \(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)
7 Chứng minh các đẳng thức sau
a) \(a^2+b^2=\left(a+b\right)^2-2ab\) ; b) \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\)
c) \(a^6+b^6=\left(a^2+b^2\right)\left[\left(a^2+b^2\right)^2-3a^2b^2\right]\)
d) \(a^6-b^6=\left(a^2-b^2\right)\left[\left(a^2+b^2\right)^2-a^2b^2\right]\)
Cho a,b,c là các số thực dương. CMR:
\(\frac{2\left(b+c-a\right)^2}{2a^2+\left(b+c\right)^2a+^{ }}+\frac{2\left(c+a-b\right)}{2b^2+\left(c+a\right)^2}+\frac{2\left(a+b-c\right)^2}{2c^2+\left(a+b\right)^2}\)\(\ge1\)
Dùng Bunhiacopxki dạng phân thức
1,cho các sô thực a,b,c thỏa mãn abc(a+b+c)=1. Tính giá trị của biểu thức Q=\(\frac{c^2\left(a+b\right)^2\left(1+a^2b^2\right)}{\left(1+b^2c^2\right)\left(1+c^2a^2\right)}\)
Cho a,b,c là các số thực dương. CMR
\(\frac{2\left(b+c-a\right)^2}{2a^2+\left(b+c\right)^2}+\frac{2\left(c+a-b\right)^2}{2b^2+\left(c+a\right)^2}+\frac{2\left(a+b-c\right)^2}{2c^2+\left(a+b\right)^2}\) ≥ 1
Cho a,b,c > 0. CMR P = \(\frac{a^2}{b\left(b+2c\right)}+\frac{b^2}{c\left(c+2a\right)}+\frac{c^2}{a\left(a+2b\right)}\) ≥ 1