Cho ba lực \(\overrightarrow{F_1}=\overrightarrow{MA};\overrightarrow{F_2}=\overrightarrow{MB};\overrightarrow{F_3}=\overrightarrow{MC}\) cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của \(\overrightarrow{F_1},\overrightarrow{F_2}\) đều là 100N và \(\widehat{AMB}=60^0\). Tìm cường độ và hướng của lực \(\overrightarrow{F_3}\) ?
Cho hai lực \(\overrightarrow{F_1}\) và \(\overrightarrow{F_2}\) có điểm đặt O vào tạo với nhau góc \(60^0\). Tìm cường độ tổng lực của hai lực ấy biết rằng cường độ của hai lực \(\overrightarrow{F_1}\) và \(\overrightarrow{F_2}\) đều là 100N
Cho hình vuông ABCD cạnh a, O=\(AB\cap BD\). Tính:
\(\left|\overrightarrow{OA}-\overrightarrow{CB}\right|\),\(\left|\overrightarrow{AB}+\overrightarrow{DC}\right|\), \(\left|\overrightarrow{CD}-\overrightarrow{DA}\right|\)
Cho hình vuông ABCD cạnh a; O=\(AB\cap BD\). Tính:
\(\left|\overrightarrow{OA}-\overrightarrow{CB}\right|\), \(\left|\overrightarrow{AB}+\overrightarrow{DC}\right|\), \(\left|\overrightarrow{CD}-\overrightarrow{DA}\right|\)
Cho 3 vectơ \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\) tuỳ ý. Chứng minh:
\(\left|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right|\le\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|+\left|\overrightarrow{c}\right|\). Dấu "=" xảy ra khi nào? Nêu bài toán tổng quát
Cho 2 vector \(\overrightarrow{a}\) và \(\overrightarrow{b}\) khác \(\overrightarrow{0}\). Khi nào các đẳng thức dưới đây xảy ra:
a) \(\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|=\left|\overrightarrow{a}+\overrightarrow{b}\right|\)
b) \(\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\)
c) \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\)
d) \(\left|\overrightarrow{a}\right|-\left|\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\)
Cho \(\overrightarrow{a},\overrightarrow{b}\) là hai vectơ khác \(\overrightarrow{0}\). Khi nào có đẳng thức :
a) \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|\)
b) \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\)
BÀI 1
Cho hình chữ nhật ABCD có AB = 8cm, AD = 6cm. Tìm tập hợp điểm M, N thỏa
a. \(\left|\overrightarrow{AO}-\overrightarrow{AD}\right|=\left|\overrightarrow{MO}\right|\)
b. \(\left|\overrightarrow{AC}-\overrightarrow{AD}\right|=\left|\overrightarrow{NB}\right|\)
BÀI 2
Cho hình vuông ABCD cạnh a. Tính độ dài các véc-tơ \(\left|\overrightarrow{BC}+\overrightarrow{BA}\right|;\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\) theo a
Cho ba điểm A,B,C. Mệnh đề nào sau đây đúng?
A. AB+BC=AC
B. \(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}=0\)
C. \(\overrightarrow{AB}-\overrightarrow{BC}\Leftrightarrow\left|\overrightarrow{CA}\right|-\left|\overrightarrow{BC}\right|\)
D. \(\overrightarrow{AB}-\overrightarrow{CA}=\overrightarrow{BC}\)