Ôn thi vào 10

NH

Nhờ các bạn làm giúp mình ạ.Mình đang cần gấp

undefined

AH
23 tháng 5 2021 lúc 0:54

Lời giải:

Cộng 3 PT lại ta có:

$x(a+b+c)+y(a+b+c)=a+b+c$

$\Leftrightarrow (a+b+c)(x+y-1)=0$

$\Rightarrow a+b+c=0$ hoặc $x+y-1=0$

TH1: $a+b+c=0\Leftrightarrow a+b=-c$

Khi đó: $a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=3abc$

$\Rightarrow \frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=3$ (đpcm)

TH2: $x+y-1=0\Leftrightarrow y=1-x$

Thay vô hpt \(\left\{\begin{matrix} ax+b(1-x)=c\\ bx+c(1-x)=a\\ cx+a(1-x)=b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x(a-b)=c-b\\ x(b-c)=a-c\\ x(c-a)=b-a\end{matrix}\right.\)

\(\Rightarrow x^3(a-b)(b-c)(c-a)=(c-b)(a-c)(b-a)=-(a-b)(b-c)(c-a)\)

\(\Leftrightarrow (a-b)(b-c)(c-a)(x^3+1)=0\)

Nếu $a-b=0$ thì kéo theo $b-c=c-a=0$

$\Rightarrow a=b=c$

Nếu $b-c=0; c-a=0$ thì tương tự

Nếu $x^3+1=0\Leftrightarrow x=-1$

$\Rightarrow b-a=c-b=a-c\Rightarrow a=b=c$

Tóm lại $a=b=c$

Do đó: $\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=1+1+1=3$ (đpcm)

 

Bình luận (0)

Các câu hỏi tương tự
MY
Xem chi tiết
LN
Xem chi tiết
AH
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết
AD
Xem chi tiết
PL
Xem chi tiết