\(\begin{array}{l}{\left( {1,5} \right)^2} = 2,25\\{\left( { - \frac{2}{3}} \right)^3} = - \frac{8}{{27}}\\{\left( {\sqrt 2 } \right)^4} = 4\end{array}\)
\(\begin{array}{l}{\left( {1,5} \right)^2} = 2,25\\{\left( { - \frac{2}{3}} \right)^3} = - \frac{8}{{27}}\\{\left( {\sqrt 2 } \right)^4} = 4\end{array}\)
Tính:
a) \({\left( {\frac{1}{5}} \right)^{ - 2}};\)
b) \({4^{\frac{3}{2}}};\)
c) \({\left( {\frac{1}{8}} \right)^{ - \frac{2}{3}}};\)
d) \({\left( {\frac{1}{{16}}} \right)^{ - 0,75}}.\)
Rút gọn biểu thức: \(A = \frac{{{{\left( {{a^{\sqrt 2 - 1}}} \right)}^{1 + \sqrt 2 }}}}{{{a^{\sqrt 5 - 1}}.{a^{3 - \sqrt 5 }}}}\,\,\,\left( {a > 0} \right).\)
Không sử dụng máy tính cầm tay, hãy so sánh:
a) \({5^{6\sqrt 3 }}\) và \({5^{3\sqrt 6 }};\)
b) \({\left( {\frac{1}{2}} \right)^{ - \frac{4}{3}}}\) và \(\sqrt 2 {.2^{\frac{2}{3}}}.\)
Rút gọn các biểu thức sau:
a) \(A = \frac{{{x^5}{y^{ - 2}}}}{{{x^3}y}}\,\,\,\left( {x,y \ne 0} \right);\) b) \(B = \frac{{{x^2}{y^{ - 3}}}}{{{{\left( {{x^{ - 1}}{y^4}} \right)}^{ - 3}}}}\,\,\,\left( {x,y \ne 0} \right).\)
Rút gọn biểu thức: \(A = \frac{{{x^{\frac{3}{2}}}y + x{y^{\frac{3}{2}}}}}{{\sqrt x + \sqrt y }}\,\,\,\left( {x,y > 0} \right).\)
Ta biết rằng \(\sqrt 2 \) là một số vô tỉ và \(\sqrt 2 = 1,4142135624...\)
Gọi \(\left( {{r_n}} \right)\) là dãy số hữu tỉ dùng để xấp xỉ số \(\sqrt 2 ,\) với \({r_1} = 1;{r_2} = 1,4;{r_3} = 1,41;{r_4} = 1,4142;...\)
a) Dùng máy tính cầm tay, hãy tính: \({3^{{r_1}}};{3^{{r_2}}};{3^{{r_3}}};{3^{{r_4}}}\) và \({3^{\sqrt 2 }}.\)
b) Có nhận xét gì về sai số tuyệt đối giữa \({3^{\sqrt 2 }}\) và \({3^{{r_n}}},\) tức là \(\left| {{3^{\sqrt 2 }} - {3^{{r_n}}}} \right|,\) khi n càng lớn?
a) Tính và so sánh: \(\sqrt[3]{{ - 8}}.\sqrt[3]{{27}}\) và \(\sqrt[3]{{\left( { - 8} \right).27}}.\)
b) Tính và so sánh: \(\frac{{\sqrt[3]{{ - 8}}}}{{\sqrt[3]{{27}}}}\) và \(\sqrt[3]{{\frac{{ - 8}}{{27}}}}.\)
Cho a là một số thực dương.
a) Với n là số nguyên dương, hãy thử định nghĩa \({a^{\frac{1}{n}}}\) sao cho \({\left( {{a^{\frac{1}{n}}}} \right)^n} = a.\)
b) Từ kết quả của câu a, hãy thử định nghĩa \({a^{\frac{m}{n}}},\) với m là số nguyên và n là số nguyên dương, sao cho \({a^{\frac{m}{n}}} = {\left( {{a^{\frac{1}{n}}}} \right)^m}.\)
Cho x, y là các số thực dương. Rút gọn các biểu thức sau:
a) \(A = \frac{{{x^{\frac{1}{3}}}\sqrt y + {y^{\frac{1}{3}}}\sqrt x }}{{\sqrt[6]{x} + \sqrt[6]{y}}};\)
b) \(B = {\left( {\frac{{{x^{\sqrt 3 }}}}{{{y^{\sqrt 3 - 1}}}}} \right)^{\sqrt 3 + 1}}.\frac{{{x^{ - \sqrt 3 - 1}}}}{{{y^{ - 2}}}}.\)