\(\sin\alpha+\cos\alpha=\sqrt{2}\) (1)
=> \(\left(\sin a+\cos a\right)^2=2\)
=> \(\sin^2\alpha+\cos^2\alpha+2\cdot\sin\alpha\cdot\cos\alpha=2\)
\(\Rightarrow1+2\cdot\sin\alpha\cdot\cos\alpha=2\Rightarrow2\cdot\sin\alpha\cdot\cos\alpha=1\)
\(\Rightarrow\sin\alpha\cdot\cos\alpha=\dfrac{1}{2}\)
Có: \(\left(\sin\alpha-\cos\alpha\right)^2=\left(\sin\alpha+\cos\alpha\right)^2-4\cdot\sin\alpha\cdot\cos a=2-2=0\)
=> \(\sin\alpha-\cos\alpha=0\) (2)
Từ (1),(2) => \(2\sin\alpha=\sqrt{2}\Rightarrow\sin a=\dfrac{\sqrt{2}}{2}\Rightarrow\alpha=45\)(ktm)
Vậy không có a nào t/m điều kiện