\(n=7\left(\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\right)\)
\(tacocongthuc:\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n\left(n+k\right)}\)
\(\Rightarrow n=7\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-.....-\frac{1}{28}\right)=7\left(\frac{1}{2}-\frac{1}{28}\right)=\frac{7.13}{28}=\frac{13}{4}\)
#)Giải :
( k chép lại đề )
\(\frac{n}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.4}\)
\(\frac{n}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{15}-\frac{1}{28}\)
\(\frac{n}{7}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)
\(\Rightarrow n=\frac{13}{28}.7=\frac{13}{4}\)