Violympic toán 9

QL

Muốn câu hỏi mình xuất hiện trong chuyên mục? Gửi ngay câu hỏi tới: https://forms.gle/PBruN2d3LXicucxu6. Chúng mình sẽ duyệt những câu hỏi hay nhất!

Hãy tương tác với page Facebook nữa nha! Cuộc thi Trí tuệ VICE | Facebook

(2-4 điểm thưởng/1 ý làm)

| Toán.C27 _ 3.8.2021 | Rin Huỳnh (Hoc24) |

undefinedundefinedundefined

| Toán.C28 _ 3.8.2021 | Hir Dương (Hoc24) |

undefinedundefinedundefinedundefinedundefined

TC
3 tháng 8 2021 lúc 20:10

undefined

Bình luận (2)
H24
3 tháng 8 2021 lúc 20:23

C27.1

Ta có: \(P=a^2+b^2+\dfrac{5}{a+b+1}=\left(a^2+1\right)+\left(b^2+1\right)+\dfrac{5}{a+b+ab+1+1}-2\)

\(\ge\dfrac{\left(a+1\right)^2}{2}+\dfrac{\left(b+1\right)^2}{2}+\dfrac{5}{\left(a+1\right)\left(b+1\right)+1}-2\)

\(\ge2\sqrt{\dfrac{\left(a+1\right)^2\left(b+1\right)^2}{4}}+\dfrac{5}{\left(a+1\right)\left(b+1\right)+1}-2\)

\(=\left(a+1\right)\left(b+1\right)+1+\dfrac{5}{\left(a+1\right)\left(b+1\right)+1}-3\)

\(=\dfrac{\left(a+1\right)\left(b+1\right)+1}{5}+\dfrac{5}{\left(a+1\right)\left(b+1\right)+1}+\dfrac{4\left(a+1\right)\left(b+1\right)+4}{5}-3\)

\(\ge2+\dfrac{4.2\sqrt{a}.2\sqrt{b}+4}{5}-3=2+\dfrac{4.4\sqrt{ab}+4}{5}-3=3\)

Dấu ''='' xảy ra khi và chỉ khi a=b=1

Bình luận (0)
H24
3 tháng 8 2021 lúc 21:10

C28.1

Ta có VT=\(\dfrac{a^4b^2}{a^2b+b}+\dfrac{b^4c^2}{b^2c+c}+\dfrac{c^4a^2}{c^2a+a}\ge\dfrac{\left(a^2b+b^2c+c^2a\right)^2}{a^2b+b^2c+c^2a+a+b+c}\)

Vì \(\left(a^2b+b^2c+c^2a\right)^3\ge\left(a+b+c\right)^3\) ( Theo bđt holder)

\(\Leftrightarrow a^2b+b^2c+c^2a\ge a+b+c\)

\(\Rightarrow VT\ge\dfrac{\left(a^2b+b^2c+c^2a\right)^2}{2\left(a^2b+b^2c+c^2a\right)}=\dfrac{a^2b+b^2c+c^2a}{2}\ge\dfrac{3\sqrt[3]{\left(abc\right)^3}}{2}=\dfrac{3}{2}\)

Dấu ''='' xảy ra khi a=b=c

Bình luận (0)
RH
3 tháng 8 2021 lúc 21:19

Toán C28, bài 1undefined

Bình luận (0)
RH
3 tháng 8 2021 lúc 21:48

Toán C28, bài 2undefinedundefined

Bình luận (0)
H24
3 tháng 8 2021 lúc 22:04

C28.1: Làm lại câu này là vì cách kia có holder nhìn hơi cấn:v

\(VT=\dfrac{a^4b^2}{a^2b+b}+\dfrac{b^4c^2}{b^2c+c}+\dfrac{c^4a^2}{c^2a+a}\ge\dfrac{\left(a^2b+b^2c+c^2a\right)^2}{a^2b+b^2c+c^2a+a+b+c}\)

Theo bđt Côsi ta có:

\(a^2b+c^2a+\dfrac{1}{bc^2}\ge3\sqrt[3]{\dfrac{a^3c^2b}{c^2b}}=3a\)

\(c^2a+b^2c+\dfrac{1}{ab^2}\ge3c\)

\(a^2b+b^2c+\dfrac{1}{a^2c}\ge3b\)

\(\Rightarrow2\left(a^2b+b^2c+c^2a\right)+\dfrac{1}{bc^2}+\dfrac{1}{ab^2}+\dfrac{1}{ca^2}\ge3\left(a+b+c\right)\)

\(\Leftrightarrow2\left(a^2b+b^2c+c^2\right)+\dfrac{a^2b+b^2c+c^2a}{a^2b^2c^2}\ge3\left(a+b+c\right)\)

\(\Leftrightarrow3\left(a^2b+b^2c+c^2a\right)\ge3\left(a+b+c\right)\Leftrightarrow a^2b+b^2c+c^2a\ge a+b+c\)

=> ..... (Làm như cách kia)

:3

 

Bình luận (0)
NC
3 tháng 8 2021 lúc 19:37

ừ chúc bạn may mắn nhé thi tốt !!!!!

Bình luận (1)
HC
3 tháng 8 2021 lúc 19:47

chúc bạn thi tốt nhé

Bình luận (0)
RH
4 tháng 8 2021 lúc 12:06

Toán C28, bài 4undefined

Bình luận (0)
RH
6 tháng 8 2021 lúc 9:28

Toán C28, bài 5) tan5x=-38/41; tan(5x - pi/4)= -79/3undefinedundefined

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
QL
Xem chi tiết